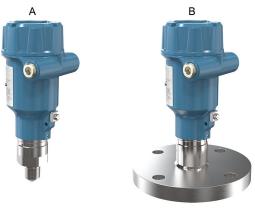
Rosemount[™] 3408 Level Transmitter

Non-Contacting Radar

- Smart features designed to make life easy
- Communicate via Bluetooth[®] wireless technology
- Advanced diagnostics and Smart Meter Verification
- NAMUR type tested and SIL 2 certified to IEC 61508 (SIL 3 capable)
- Versatile FMCW radar for application flexibility



Introduction

Flexible and fit for purpose

The Rosemount 3408 Level Transmitter provides accurate continuous level measurements in a broad range of process applications. The versatile design enables fit for purpose solutions and flexibility in use. For example, the transmitter can be used in tanks and vessels with small process fittings, corrosive environments, and open air installations. It is certified for use in hazardous locations and meets NAMUR recommendations.

Figure 1: Antenna Types

- A. Lens antenna ideal for small process fittings
- B. Process seal antenna with wetted parts in PTFE
- C. Bracket mounted ATAP lens antenna

Contents

Introduction	
Ordering information	
Performance specifications	
Functional specifications	
Physical specifications	
Installation considerations	24
Product certifications	
Dimensional drawings	

Ease-of-use at every touch point

The Rosemount 3408 is designed to simplify operator tasks with pictorial instructions and an intuitive software interface. Bluetooth wireless technology allows for safe and convenient configuration and maintenance work.

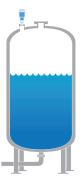
Remote verification and proof-testing can be carried out from the control room at any time, without interrupting the process. Smart Meter Verification also enables operators to schedule automatic verification and receive formal reports. In addition, preventive diagnostic alerts let you know in advance when it is time to plan maintenance.

Increase plant safety

The Smart Diagnostics Suite provides operators with early alerts in case of antenna build-up or abnormal surface conditions. Also, a local memory enables full insight into the last three days of measurements, alerts, and echo profiles.

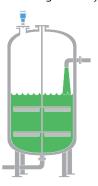
The Rosemount 3408 is safety certified (SIL 2/SIL 3), supports long proof-test intervals guaranteed to suit your schedule, and can be tested remotely without any process interruption.

Non-contacting radar technology

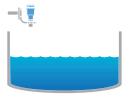

Non-contacting radar technology is ideal for a wide range of applications as it is maintenance-free, has a top-down installation that reduces the risk of leakages, and is unaffected by process conditions such as density, viscosity, temperature, pressure, and pH.

The Rosemount 3408 uses Frequency Modulated Continuous Wave (FMCW) technology and smart algorithms to maximize measurement accuracy and reliability, even in small tanks and challenging fast-filling vessels.

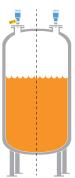
Application examples


Storage tanks

Ensure correct filling and storage levels in your tanks.


Mixing tanks

Gain insights into your process and ensure production runs smoothly without interruption.


Open air applications

Get reliable level measurements of sumps or ponds, regardless of challenging surface and weather conditions.

Safety applications

The Rosemount 3408 is suitable for safety applications such as overfill prevention, dry-run prevention, or level range monitoring.

Access information when you need it with asset tags

Newly shipped devices include a unique QR code asset tag that enables you to access serialized information directly from the device. With this capability, you can:

- Access device drawings, diagrams, technical documentation, and troubleshooting information in your MyEmerson account
- Improve mean time to repair and maintain efficiency
- Ensure confidence that you have located the correct device
- Eliminate the time-consuming process of locating and transcribing nameplates to view asset information

Ordering information

Online product configurator

Many products are configurable online using our Product Configurator. Select the **Configure** button or visit our website to start. With this tool's built-in logic and continuous validation, you can configure your products more quickly and accurately.

Specifications and options

See the Specifications and options section for more details on each configuration. Specification and selection of product materials, options, or components must be made by the purchaser of the equipment. See the Material selection section for more information.

Related information

Performance specifications Functional specifications Physical specifications Material selection

Model codes

Model codes contain the details related to each product. Exact model codes will vary; an example of a typical model code is shown in Figure 2.

Figure 2: Model Code Example

3408 A 1 S H A 1 E5 1 N A ZZ SBA M6 DA1 C2 C4 2

- 1. Required model components (choices available on most)
- 2. Additional options (variety of features and functions that may be added to products)

Optimizing lead time

The starred offerings (\star) represent the most common options and should be selected for the fastest delivery times. The non-starred offerings are subject to additional delivery lead time.

Rosemount 3408 Level Transmitter ordering information

The Rosemount 3408 is a two-wire non-contacting radar transmitter for level measurements on liquids and slurries. It uses a unique energy efficient radar technology based on the FMCW principle to ensure reliable performance even in challenging conditions.

CONFIGURE >

VIEW PRODUCT >

Required model components

Model

Code	Description	
3408	Radar Level Transmitter	*

Profile

Code	Description	
Α	Standard monitoring & control applications	*

Measurement type

Code	Description	
1	Liquid level measurement	*

Performance class

Code	Description	Reference accuracy	
А	Ultra accuracy	±0.04 in. (±1 mm)	*
S	Standard	±0.08 in. (±2 mm)	*

Signal output

Code	Description	
Н	4–20 mA with HART® 7	*

Housing material

Code	Description	
Α	Aluminum	*

Conduit/cable threads

Code	Description	Note	
1	½-14 NPT	Blind plug in aluminum	*
2	M20 x 1.5	Blind plug in aluminum	*
4	½-14 NPT	Blind plug in 316	*
5	M20 x 1.5	Blind plug in 316	*

Hazardous locations certifications

Code	Description	
NA	None	*
E1 ⁽¹⁾	ATEX/UKEX Flameproof (pending)	*
I1	ATEX/UKEX Intrinsic Safety	*
N1	ATEX/UKEX Increased Safety (Zone 2)	*
E5 ⁽¹⁾	USA Explosion-proof, Dust Ignition-proof (pending)	*
15	USA Intrinsic Safety	*
N5	USA Increased Safety (Zone 2)	*
E6 ⁽¹⁾	Canadian Explosion-proof, Dust Ignition-proof (pending)	*
16	Canadian Intrinsic Safety	*
N6	Canadian Increased Safety (Zone 2)	*
E7 ⁽¹⁾	IECEx Flameproof, Dust Ignition-proof (pending)	*
17	IECEx Intrinsic Safety	*
N7	IECEx Increased Safety (Zone 2)	*
E3 ⁽¹⁾	China Flameproof (pending)	*
13	China Intrinsic Safety (pending)	*
N3	China Increased Safety (Zone 2) (pending)	*
EW ⁽¹⁾	India Flameproof (pending)	*
IW	India Intrinsic Safety (pending)	*

⁽¹⁾ Not available with ATAP lens antenna.

Related information

Product certifications

Materials of construction

Code	Description	Available antenna types	
1	316/316L/EN 1.4404, PTFE lens	Lens	*
7	All PTFE wetted parts	Process seal	*
Α	Aluminum, PTFE lens	ATAP lens	*

Process connection type

Code	Description	Available antenna types	
F	Flat Face flange	Process seal	*
R	Raised Face flange	Process seal	*
N	NPT thread	Lens	*
G	BSPP (G) thread	Lens, ATAP lens	*

Related information

Availability of process connections

Process connection size

Code	Description	Available process connections	
С	¾-in.	Thread	*
1	1-in.	Thread	*
Α	1½-in.	Thread	*
2	2-in./DN50/50A	Flange	*
3	3-in./DN80/80A	Flange	*
4	4-in./DN100/100A	Flange	*
6	6-in./DN150/150A	Flange	*

Related information

Availability of process connections

Process connection rating

Code	Description	
ZZ	None (for use with threaded process connection type)	*
AA	ASME B16.5 Class 150 flange	*
AB	ASME B16.5 Class 300 flange	*
DA	EN1092-1 PN16 flange	*
DB	EN1092-1 PN40 flange	*
JA	JIS 10K flange	*
JB	JIS 20K flange	*

Related information

Availability of process connections

Antenna type

Code	Description	Operating pressure	Operating temperature	
SAA	Process seal antenna	-15 to 363 psig (-1 to 25 bar)	-76 to 392 °F (-60 to 200 °C)	*
SBA	Lens antenna	-15 to 363 psig (-1 to 25 bar)	-76 to 392 °F (-60 to 200 °C)	*
SCA	ATAP (Atmospheric Temperature and Pressure) lens antenna	-15 to 7 psig (-1 to 0.5 bar)	-4 to 176 °F (-20 to 80 °C) ⁽¹⁾	*

⁽¹⁾ The temperature range is -40 to 176 °F (-40 to 80 °C) for open air applications.

Related information

Antenna versions

Additional options

Installation options

The mounting bracket is available for the ATAP lens antenna.

Code	Description	
BR	Mounting bracket	*

Local wireless device access

Code	Description	
BLE	Bluetooth [®] configuration and maintenance	*

Related information

Bluetooth wireless technology

Display

Code	Description	
M6	Graphical LCD display	*

Related information

LCD display

Diagnostic functionality

Code	Description	
DA1	HART Smart Diagnostics Suite	*

Related information

Smart Diagnostics Suite

Smart proof test

Code	Description	
ET	Smart Echo Level Test	*

Related information

Smart echo level test

Smart meter verification

Smart Meter Verification (basic) is always included.

Code	Description	
MV	Smart Meter Verification (professional)	*

Related information

Smart meter verification

Factory configuration

Code	Description	
C2 ⁽¹⁾	Factory configuration	*

⁽¹⁾ Factory configuration of Level as Primary Variable (PV), Upper/Lower Range Value, Reference Height, Length units, LCD display language, and Write Protect.

Alarm limits

Code	Description	
C4	NAMUR alarm and saturation levels, high alarm	*
C5	NAMUR alarm and saturation levels, low alarm	*
C8 ⁽¹⁾	Standard Rosemount alarm and saturation levels, low alarm	*

⁽¹⁾ The standard alarm setting is high.

Welding standard for flanges

Code	Description	
AW	According to ASME IX	*
EW	According to EN-ISO	*

Country certification

CRN is not available with EN1092-1 or JIS B2220 flanges.

Code	Description	
J1	Canadian Registration (CRN) (pending)	*

Special quality assurance

Code	Description	
Q4	Calibration data certificate	*

Hydrostatic testing

Hydrostatic testing is only available for flanged process connections.

Code	Description	
Q5	Hydrostatic testing, including certificate	*

Material traceability certification

Certificate includes all pressure retaining and wetted parts.

Cod	Description	
Q8	Material traceability certification per EN 10204 3.1 (2.1 for non-metallic)	*

Quality certification for safety

Code	Description	
QT	Safety-certified to IEC 61508 with certificate of FMEDA data	*

Materials certification

The materials certification is not available with ATAP lens antenna.

Code	Description	
Q15	NACE® material recommendation per NACE MR0175/ISO 15156	*
Q25	NACE material recommendation per NACE MR0103/ISO 17945	*
Q35	NACE material recommendation per NACE MR0175/ISO 15156 and NACE MR0103/ISO 17945	*

Welding procedure qualification record documentation

Code	Description	
Q66	Welding Procedure Qualification Record (WPQR)	*
Q67	Welder Performance Qualification (WPQ)	*
Q68	Welding Procedure Specification (WPS)	*
Q79	WPQR/WPQ/WPS	*

Dye penetration test certificate

Only available with flanged process connections.

Code	Description	
Q73	Certificate of liquid penetrant inspection	*

Positive material identification certificate

Code	Description	
Q76	Positive material identification certificate of conformance	*

Overfill prevention

Code	Description	
U1	Overfill prevention according to WHG/TUV (pending)	*

Extended product warranty

Rosemount extended warranties have a limited warranty of three or five years from date of shipment.

Code	Description	
WR3	3-year limited warranty	*
WR5	5-year limited warranty	*

Conduit electrical connector (shipped uninstalled)

Requires ½-14 NPT conduit/cable threads. Available with Intrinsically Safe approvals only.

Code	Description	
EC	M 12, 4-pin, male connector (eurofast®)	*
MC	A size Mini, 4-pin, male connector (minifast®)	*

Specials

Code	Description	
PXXXX	Custom engineered solutions beyond standard model codes. Consult factory for details.	

Related information

Engineered solutions

Availability of process connections

Table 1: Type vs. Size and Rating

F = Flat Face; G = BSPP (G) thread; N = NPT thread; R = Raised Face

Antenna type	Process connection size	Process connection rating				
		Thread	ASME B16.5	EN1092-1	JIS B	2220
			Class 150/300	PN16/PN40	10K	20K
Lens antenna	³⁄4-in.	G, N	N/A	N/A	N/A	N/A
	1-in.	G, N	N/A	N/A	N/A	N/A
	1½-in.	G, N	N/A	N/A	N/A	N/A
ATAP lens antenna	1½-in.	G	N/A	N/A	N/A	N/A
Process seal antenna	2-in./DN50/50A	N/A	R	F	R	R
	3-in./DN80/80A	N/A	R	F	R	R
	4-in./DN100/100A	N/A	R	F	R	R
	6-in./DN150/150A	N/A	R	F	R	N/A

Performance specifications

General

Reference conditions

Measurement target: Stationary metal plate, no disturbing objects

Antenna: Process seal

Temperature: 59 to 77 °F (15 to 25 °C)

■ Ambient pressure: 14 to 15 psi (960 to 1060 mbar)

Relative humidity: 25-75%

Damping: Default value, 2 s

Instrument accuracy (under reference conditions)

Ultra accuracy: ± 0.04 in. $(\pm 1 \text{ mm})^{(1)}$

■ Standard: ±0.08 in. (±2 mm)⁽¹⁾

Repeatability

 ± 0.02 in. (± 0.5 mm)

Ambient temperature effect

 ± 0.04 in. $(\pm 1 \text{ mm})/10 \text{ K}$

Sensor update rate

- Minimum 1 Hz (with 15 Vdc at 4 mA; 12 Vdc at 22.5 mA)
- Minimum 0.5 Hz (with 13 Vdc at 4 mA)

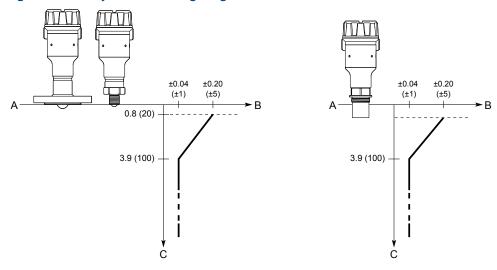
Maximum level rate

40 mm/s as default, adjustable up to 200 mm/s

Measuring range

Table 2: Maximum Measuring Range, ft. (m)

Antenna type Basic Process Control System (BPCS)		Safety Instrumented Systems (SIS)
Process seal antenna	98 (30)	49 (15)
Lens antenna	49 (15)	49 (15)
ATAP lens antenna	98 (30)	49 (15)


⁽¹⁾ Refers to inaccuracy according to IEC 60770-1 when excluding installation dependent offset. See the IEC 60770-1 standard for a definition of radar specific performance parameters and if applicable corresponding test procedures.

Note that a combination of adverse process conditions, such as heavy turbulence, foam, and condensation, together with products with poor reflection may affect the measuring range.

Accuracy over measuring range

Figure 3 illustrates the accuracy over measuring range at reference conditions.

Figure 3: Accuracy Over Measuring Range

- A. Device Reference Point
- B. Accuracy in inches (millimeters)
- C. Distance in inches (millimeters)

Environment

Vibration resistance

2 g at 10-1000 Hz according to IEC 61298-3, level "field with general application"

Note

The bracket option does not meet the vibration requirements.

Electromagnetic compatibility (EMC)

- EMC Directive (2014/30/EU): EN 61326-1
- EN 61326-2-3
- NAMUR recommendations NE21

Pressure Equipment Directive (PED)

Complies with 2014/68/EU article 4.3

Built-in lightning protection

EN 61326, IEC 61000-4-5, level 2kV

Radio approvals

- Radio Equipment Directive (2014/53/EU):
 - ETSI EN 302 372 (TLPR)
 - ETSI EN 302 729 (LPR)
 - EN 301 489-17 and EN 300 328 (Bluetooth®)
 - EN 62479
- Part 15 of the FCC Rules
- Industry Canada RSS 211

Functional specifications

General

Field of application

Continuous level measurements on a broad range of liquids and slurries.

Measurement principle

Frequency Modulated Continuous Wave (FMCW)

Frequency range

77 to 81 GHz

Maximum output power

+5 dBm (3.2 mW)

Internal power consumption

< 0.8 W in normal operation

Humidity

0 - 100% relative humidity, non-condensing

Turn-on time

 $< 60 s^{(2)}$

Emerson.com/Rosemount 15

⁽²⁾ Time from when power is applied to the transmitter until performance is within specifications.

Functional safety

The Rosemount 3408 Level Transmitter is IEC 61508 certified to:

- Low and high demand: Type B element
- SIL 2 for random integrity @ HFT=0
- SIL 3 for random integrity @ HFT=1
- SIL 3 for systematic capability

Related information

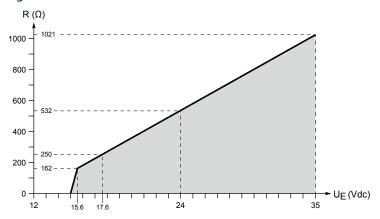
Functional Safety Certificate Rosemount 3408 Safety Manual

4-20 mA HART®

Output

Two-wire, 4-20 mA. Digital process variable is superimposed on 4-20 mA signal, and available to any host that conforms to the HART protocol. The digital HART® signal can be used in multidrop mode.

HART universal revision


7

Load limitations

For HART[®] communication, a minimum loop resistance of 250 Ω is required. Maximum loop resistance (R) is determined by the voltage level of the external power supply (U_E):

U _E (Vdc)	$R(\Omega)$
≥ 15.6	$R = 44.4 \times (U_E - 12)$
<15.6	$R = 250 \times (U_E - 15)$

Figure 4: Load Limits

Analog signal on alarm

The transmitter automatically and continuously performs self-diagnostic routines. If a failure or a measurement error is detected, the analog signal will be driven offscale to alert the user. High or low failure mode is user-configurable.

Table 3: Signal on Alarm

Standard	High	Low
Rosemount standard	≥ 21.75 mA	≤ 3.75 mA
NAMUR NE43	≥ 21.0 mA	≤ 3.6 mA

Related information

Alarm limits

Analog saturation levels

The transmitter will continue to set a current that corresponds to the measurement until reaching the associated saturation limit (and then freeze).

Table 4: Saturation Levels

Standard	High	Low
Rosemount standard	20.8 mA	3.9 mA
NAMUR NE43	20.5 mA	3.8 mA

Related information

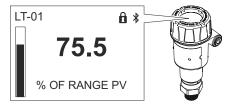
Alarm limits

Bluetooth® wireless technology

Minimum typical range

50 ft. (15 m) line of sight. Maximum communication range will vary depending on orientation, obstacles (person, metal, wall, etc.) or electromagnetic environment.

Related information


Emerson.com/Automation-Solutions-Bluetooth

Display and configuration

LCD display

- Toggles between selected output variables
- Shows diagnostic information (alerts)
- Multi-language support
- Ability to rotate the view 180 degrees

Figure 5: LCD Display

Remote display

Data can be read remotely by using the Rosemount 751 Field Signal Indicator, see the corresponding Product Data Sheet for more information.

Configuration tools

- Field Device Integration (FDI) compliant systems
- Device Descriptor (DD) compliant systems
- Device Type Manager (DTM[™]) compliant systems
- Emerson's configuration tools with Bluetooth® wireless technology capabilities

Related information

Emerson.com/AMSDeviceConfigurator

Rosemount Radar Master Plus

Rosemount Radar Master Plus is the recommended tool for configuration. It is a User Interface Plug-in (UIP) that includes basic configuration options, as well as advanced configuration and service functions. An FDI or DTM compliant host is needed to run Rosemount Radar Master Plus.

Related information

Emerson.com/RosemountRadarMasterPlus

Damping

User selectable (default is 2 s, minimum is 0 s)

Output units

■ Level and distance: ft., in., m, cm, mm

■ Level rate: ft/s, in./min, in./s, m/h, m/s

■ Volume: ft³, in.³, yd³, US gal, imperial gal, barrel (bbl), m³, l

Temperature: °F, °CSignal strength: mV

Output variables

Variable	4-20 mA	Digital output	LCD display
Level	✓	✓	✓
Distance (ullage)	✓	✓	✓
Volume	✓	✓	✓
Scaled variable ⁽¹⁾	✓	✓	✓
Electronics temperature	N/A	✓	✓
Signal quality ⁽¹⁾	N/A	✓	✓
Level rate	N/A	✓	✓
Signal strength	N/A	✓	✓
Percent of range	N/A	✓	✓
Percent of range auxiliary	N/A	✓	✓
User-defined ⁽¹⁾	✓	✓	✓
Loop current	N/A	N/A	✓

⁽¹⁾ Only for transmitters ordered with Smart Diagnostics Suite.

Diagnostics

Alerts

The transmitter is compliant with NAMUR NE 107 Field Diagnostics for standardized device diagnostic information.

Tools and logging in Rosemount Radar Master Plus

Rosemount Radar Master Plus enables easy and powerful troubleshooting with the echo curve tool as well as the measurement and alert log.

The measurement and alert log holds records of the last three days of level readings and echo curve profiles, as well as the 50 last alert events. The logs can be transferred from the transmitter's internal memory to a local computer and be presented in a graphical time line, enabling analysis of historical behaviors.

Smart Diagnostics Suite

Signal Quality Metrics

Diagnostics package that monitors the relations between surface, noise, and threshold. The function can be used to detect abnormal conditions in the process such as antenna contamination or sudden loss of signal strength. Signal Quality is available as output variable and it comes with user configurable alerts.

Scaled variable

The scaled variable configuration allows the user to convert a device variable into an alternative measurement, such as flow, mass, or calibrated level (e.g. five-point point verification).

User defined variable

Allows designating more than 200 variables in the device as output variable.

Smart echo level test

The function allows you to test the behavior of the transmitter in a real tank environment without raising the level. During the test, a virtual surface echo is superimposed onto the radar signal, and the transmitter will output a level corresponding to the echo position.

The test verifies the integrity of the signal processing, and can be used to test the alarm limits in the host system, output of the transmitter, and transmitter configuration (for example the upper/lower range values).

Smart meter verification

Smart Meter Verification is an automatic diagnostic tool that monitors the entire transmitter's performance and integrity without interrupting the process. The results of this diagnostic provide a pass/fail summary report helping you to quickly identify and resolve potential issues. Configuration changes since previous verification are tracked to verify consistency of the device setup.

The Smart Meter Verification functionality can be scheduled to run at defined intervals, or it can be initiated on demand.

Supported features

Table 5: Basic vs Professional

Feature	Basic	Professional
Manually initiated verification	✓	✓
Schedule verification	N/A	✓
Previous verifications stored	1	20
Printable report	N/A	✓

Process pressure

Final rating may be lower depending on flange selection.

Process seal antenna

-15 to 363 psig (-1 to 25 bar)

Lens antenna

-15 to 363 psig (-1 to 25 bar)

ATAP lens antenna

-15 to 7 psig (-1 to 0.5 bar)

Temperature limits

Process temperature

Process seal antenna

-76 to 392 °F (-60 to 200 °C)

Lens antenna

-76 to 392 °F (-60 to 200 °C)

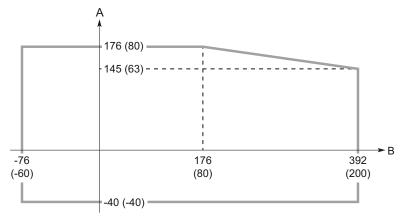
ATAP lens antenna

-4 to 176 °F (-20 to 80 °C)

Note

The temperature range is -40 to 176 °F (-40 to 80 °C) for open air applications.

Ambient temperature


-40 to 176 °F (-40 to 80 °C)

Note

LCD display may not be readable and LCD display updates will be slower at temperatures below -4 °F (-20 °C).

The ambient temperature limits may be further restricted by the process temperature as described by Figure 6.

Figure 6: Ambient Temperature vs. Process Temperature

- A. Ambient temperature °F (°C)
- B. Process temperature °F (°C)

Verify that the operating atmosphere of the transmitter is consistent with the appropriate hazardous locations certifications.

Related information

Product certifications

Storage temperature

-40 to 176 °F (-40 to 80 °C)

Flange rating

ASME

316 SST according to ASME B16.5 Table 2-2.2

ΕN

1.4404 according to EN 1092-1 material group 13E0

IIS

316 SST according to JIS B2220 material group No. 2.2

Conditions used for flange strength calculations

Table 6: Stainless Steel Flanges

Item	ASME	EN, JIS
Bolting material	SA193 B8M CL.2	ISO 3506 A4-70
Flange material	Stainless steel A182 Gr. F316 and EN 10222-5-1.4404	
Hub material	Stainless steel SA479 316 and EN 10272-1.4404	

System integration

Rosemount 333 HART[®] Tri-Loop[™]

By sending the digital HART signal to the optional HART Tri-Loop, it is possible to have up to three additional 4–20 mA analog signals.

See the Rosemount 333 HART Tri-Loop Product Data Sheet for additional information.

Emerson Wireless 775 THUM™ Adapter

See the Emerson Wireless 775 THUM Adapter Product Data Sheet and Technical Note for additional information.

Physical specifications

Material selection

Emerson provides a variety of Rosemount products with various product options and configurations, including materials of construction that can be expected to perform well in a wide range of applications. The Rosemount product information presented

is intended as a guide for the purchaser to make an appropriate selection for the application. It is the purchaser's sole responsibility to make a careful analysis of all process parameters (such as all chemical components, temperature, pressure, flow rate, abrasives, contaminants, etc.), when specifying product, materials, options, and components for the particular application. Emerson is not in a position to evaluate or guarantee the compatibility of the process fluid or other process parameters with the product, options, configuration, or materials of construction selected.

Engineered solutions

When standard model codes are not sufficient to fulfill requirements, please consult the factory to explore possible Engineered Solutions. This is typically, but not exclusively, related to the choice of wetted materials or the design of a process connection. These Engineered Solutions are part of the expanded offerings and may be subject to additional delivery lead time. For ordering, factory will supply a special P-labeled numeric option code that should be added at the end of the standard model string.

Housing and enclosure

Electrical connections

Two cable/conduit entries (½-14 NPT or M20 x 1.5)

Housing material

Polyurethane-covered aluminum

Ingress protection

Process seal and lens antennas

- IP 66/67/68⁽³⁾
- NEMA® 4X

ATAP lens antenna

- IP 65
- NEMA® 4X

Antenna versions

Process seal antenna

All PTFE wetted parts ideal for use in corrosive applications

Lens antenna

Suitable for use on vessels with small process fittings

ATAP lens antenna

Designed for open air installations and non-pressurized tanks

⁽³⁾ The transmitter meets IP 68 at 3.3 ft. (1 m) for 45 minutes.

Material exposed to tank atmosphere

Process seal antenna

■ PTFE sealing: PTFE fluoropolymer

Lens antenna

- PTFE sealing: PTFE fluoropolymer
- Threaded process connection: Stainless steel 316/316L (EN 1.4404)

ATAP lens antenna

- PTFE sealing: PTFE fluoropolymer
- Threaded process connection: Anodized aluminum 6082-T6 or 6061-T6
- O-ring: FKM
- Antenna extension for open air: PTFE fluoropolymer with carbon filler

Electrical connection

Power supply

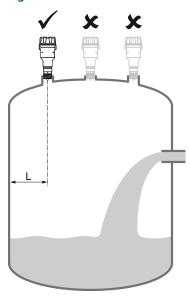
The transmitter operates on max. 35 Vdc transmitter terminal voltage and max. 22.5 mA (max. 30 Vdc in Intrinsically Safe installations).

Cable selection

Use 24-16 AWG wire (0.20-1.5 mm²). Twisted pairs and shielded wiring are recommended for environments with high EMI (electromagnetic interference).

Fine stranded conductors shall be equipped with a ferrule.

Installation considerations


Before installing the transmitter, follow recommendations for mounting position, sufficient free space, nozzle requirements, etc.

Mounting position

When finding an appropriate location on the tank for the transmitter, the conditions of the tank must be carefully considered. Consider the following guidelines when mounting the transmitter:

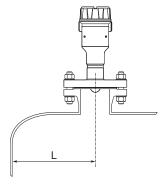
- For optimal performance, the transmitter should be installed in locations with a clear and unobstructed view of the product surface.
- The transmitter should be mounted with as few internal structures as possible within the signal beam.
- Do not install the transmitter in the center of the tank.
- Do not mount close to or above the inlet stream.
- Do not mount the transmitter on a manway cover.
- Do not position the transmitter directly over a side manway door.
- Multiple Rosemount 3408 transmitters can be used in the same tank without interfering with each other.

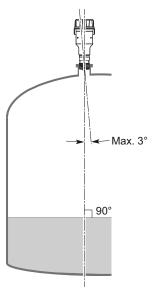
Figure 7: Recommended Mounting Position

Free space requirements

If the transmitter is mounted close to a wall or other tank obstruction such as heating coils and ladders, noise might appear in the measurement signal. See Table 7 for recommended clearance.

Figure 8: Free Space Requirements




Table 7: Distance to Tank Wall (L)

Minimum	Recommended
8 in. (200 mm)	½ of tank radius

Inclination

The transmitter should be mounted vertically to ensure a good echo from the product surface. See Figure 9 for recommended maximum inclination.

Figure 9: Inclination

Non-metallic tanks

Nearby objects outside the tank may cause disturbing radar echoes. Wherever possible, the transmitter should be positioned so that objects close to the tank are kept outside the signal beam.

Beam angle and beam width

The transmitter should be mounted with as few internal structures as possible within the signal beam.

Figure 10: Beam Angle and Beam Width

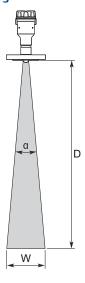
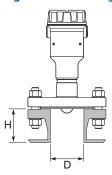


Table 8: Beam Angle

Antenna type	Beam angle (α)
Process seal antenna	8°
Lens antenna (¾-in. thread)	12°
Lens antenna (1- and 1½-in. threads)	9°
ATAP lens antenna	8°

Beam width

See Table 9 for beam width at different distances.


Table 9: Beam Width (W), ft. (m)

Distance (D)	Beam angle (α)		
	8°	9°	12°
16 (5)	2.2 (0.7)	2.5 (0.8)	3.4 (1.1)
33 (10)	4.6 (1.4)	5.2 (1.6)	7.0 (2.1)
49 (15)	6.9 (2.1)	7.8 (2.4)	10.4 (3.2)
66 (20)	9.3 (2.8)	10.5 (3.2)	14.0 (4.3)
82 (25)	11.5 (3.5)	13.0 (4.0)	17.4 (5.3)
98 (30)	13.8 (4.2)	15.5 (4.8)	20.8 (6.4)

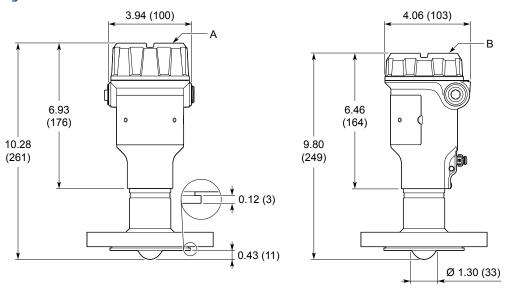
Nozzle requirements

To allow the microwaves to propagate undisturbed, the nozzle dimensions should be kept within the specified limits as given in Table 10. The inside of the nozzle must be smooth (i.e. avoid bad welding, rust, or deposit).

Figure 11: Mounting in Nozzles

Table 10: Nozzle Requirements

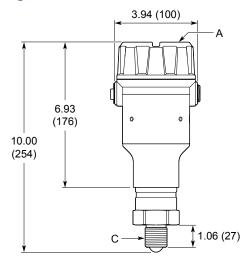
Nozzle diameter (D)	Maximum nozzle height (H)
1 in. (25 mm) ⁽¹⁾	3.9 in. (100 mm)
1.5 in. (40 mm)	5.9 in. (150 mm)
2 in. (50 mm)	7.9 in. (200 mm)
3 in. (80 mm)	11.8 in. (300 mm)
4 in. (100 mm)	15.8 in. (400 mm)
6 in. (150 mm)	23.6 in. (600 mm)

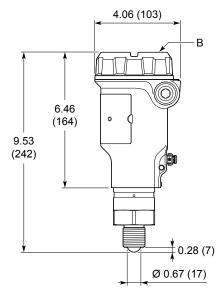

⁽¹⁾ Not applicable to the process seal antenna.

Product certifications

See the Rosemount 3408 Product Certifications document for detailed information on the existing approvals and certifications.

Dimensional drawings

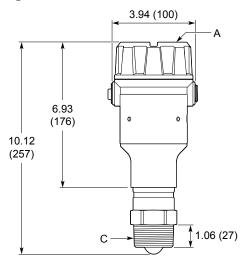

Figure 12: Process Seal Antenna

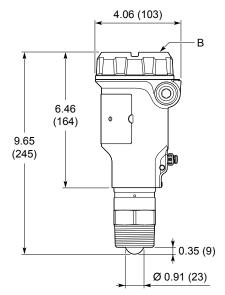


- A. LCD display option
- B. No LCD display

Dimensions are in inches (millimeters).

Figure 13: Lens Antenna with ¾-in. Threaded Process Connection

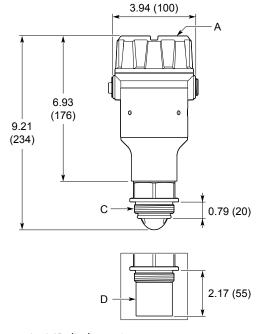


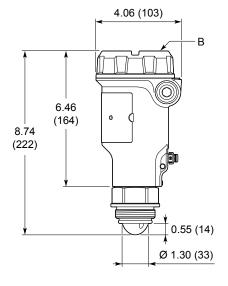


- A. LCD display option
- B. No LCD display
- C. NPT or BSPP (G)

Dimensions are in inches (millimeters).

Figure 14: Lens Antenna with 1- or 1½-in. Threaded Process Connection

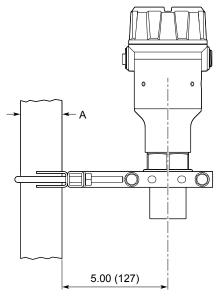




- A. LCD display option
- B. No LCD display
- C. NPT or BSPP (G)

Dimensions are in inches (millimeters).

Figure 15: ATAP Lens Antenna





- A. LCD display option
- B. No LCD display
- C. BSPP (G) 1½-in.
- D. Antenna extension for open air installations

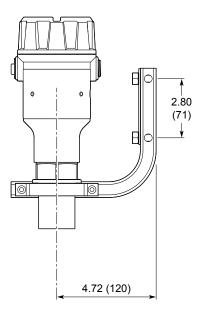

Dimensions are in inches (millimeters).

Figure 16: ATAP Lens Antenna with Mounting Bracket

Dimensions are in inches (millimeters).

For more information: **Emerson.com**

©2022 Emerson. All rights reserved.

Emerson Terms and Conditions of Sale are available upon request. The Emerson logo is a trademark and service mark of Emerson Electric Co. Rosemount is a mark of one of the Emerson family of companies. All other marks are the property of their respective owners.

